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Abstract. We evaluate the power spectra of the time series for the following simple observables
in the Fermi–Pasta–Ulam model: harmonic energy, kinetic energy, microcanonical density, Frenet–
Serret curvature and the Lyapunov variable. For some of these observables, also in the stochastic
regime, the spectra show a well defined quasi-harmonic structure, with harmonic frequencies shifted
with a single rescaling factor, as calculated in a previous paper. Even higher frequencies are excited:
as replicas of the harmonic window at low energy, to end up with a smooth distribution at high
energy, showing a power law behaviour (flicker noise). In the intermediate region the shape depends
on the observables, but in all cases the crossover is the maximum of the shifted harmonic spectrum.
This establishes an intrinsic short-time scale depending only on the energy density, as does the
frequency rescaling factor. For the curvature, we also evaluate the standard deviation: above
threshold, at increasing energy, it decreases exactly as the inverse of the rescaling factor. This can
be interpreted as a focalization around ‘effective tori’ of a harmonic-like regime which apparently
coexist with the chaotic motion.

The Fermi–Pasta–Ulam (FPU) anharmonic chain has been extensively used to clarify the
transition between two regimes of motion, hereafter indicated, for simplicity, as ordered and
stochastic [1–5]. For details about the model and the parameters, see [2]. Here we only give
the form of the Lagrangian function:

L =
N∑
i=1

[
1

2
(ẋ2
i − χ(xi+1− xi)2)− ε

4
(xi+1− xi)4

]
xN+1 = x1. (1)

It has been well established that the energy densityu = E/N (whereE is the total energy
andN the number of particles in the chain), is an order parameter with a transition band(u1, u2)

such that the motion is ordered foru < u1 and stochastic foru > u2. The very nature of such
a transition may be interpreted as follows:

• as a weak-chaos/strong-chaos transition, by looking at the ordered regime as an extremely
slow approach to equilibrium (see e.g. [3,5–7]);
• as a transition from order to stochasticity, by emphasizing the possible role of surviving

invariant surfaces (see e.g. [1,2,8]). Residual surfaces, or quasi-constants of motion, even
if with zero-measure, could also provide a certain degree of order within the stochastic
regime.
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These two points of view are not necessarily incompatible. In fact, the first one stresses the
role of long times in the settlement of disorder, while the second stresses the role of structural
properties, linking the dynamics and local geometrical features of trajectories, even appearing
within short evolution times. In this paper we shall deal mainly with the second approach,
exploring the possible existence of an intrinsic short-time scale. To this end, we have studied
the spectral properties of time series for some simple observables, measured at discretized
timest = nt̂ , t̂ being the sampling interval. The observables are:

• the total harmonic energy

Eh = 1
2

N∑
k=1

ωk(p
2
k + q2

k ) =
N∑
k=1

Ek (2)

expressed in terms of the canonical homogeneous variables(p, q), which diagonalize the
harmonic part of (1) as in [2]. We have also considered separately, when necessary, the
plain kinetic energyT ;
• the microcanonical densityρ(t) = 1/|∇H(t)|;
• the Frenet–Serret first curvatureκ(t);
• the local rate of divergence, or ‘Lyapunov observable’,δn = δ(t̂, n).

All these observables have been previously used, in various ways and forms, to approach
the transition problem described above. In explicit terms the curvatureκ(t) is defined by the
first Frenet–Serret formula [2]

dt

ds
= κn (3)

wheretandnare the tangent and normal unitary vectors to the trajectory, ands is the curvilinear
coordinate. As for the last quantityδn, we recall that, in suitable limits, its time average gives
the largest Lyapunov exponent [9]. Its definition is as follows: at timet = 0 consider two orbits
displaced by a vectorD(0) at small distanceD0 = |D(0)|. Let them evolve for a timêt and
evaluate the new displacementD(t̂) and the distanceDt̂ ; then, renormalize the position of the
second orbit multiplyingD(t̂) byD0/Dt̂ . This procedure may be iterated. At thenth iteration
(or time t = nt̂) it provides the distanceDnt̂ . Thenδn = 1/t̂ log(Dnt̂/D0). Actually, the
above procedure is only an approximation to the correct definition of the maximal Lyapunov
exponent, which should be calculated in the tangent manifold to each point. The validity of
this approximation for our needs has been established by looking at the stability of the results
whent̂ tends to zero in numerical experiments. In any case,δn measures the local divergence
of trajectories.

By numerical integration of the equation of motion, we have computed the truncated time
series{f1, f2, . . . , fm}, f being one of our observables, and their power spectra via fast Fourier
transform. The analysis of the spectral properties has been completed with the evaluation of
the usual statistical quantities, such as time averages and standard deviations along the orbit.
For observables with an intrinsic geometrical meaning (such asκ), we also expect that these
quantities provide a link between geometry and dynamics.

Before introducing the results, we give some experimental specifications.

• N : in most experimentsN = 64, with several checks up toN = 512.
• m, the length of the time series: we have chosenm = 2048, 4096, 8192, with checks up

to m = 32 768. Apart from obvious differences, differentm give coherent results even
above threshold. Note that these times are very short with respect to usual thermalization
times [7,8].
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• t̂ , the Lyapunov free-evolution time: we have chosent̂ = 501t , where1t = 0.0024 is
the integration step, or equivalentlyt̂ = 0.382τmin, whereτmin is the shortest harmonic
period. Experiments witĥt = 251t or 1001t confirmed the stability and reliability of
the results.
• The sampling interval: for simplicity, we have chosen the samet̂ value as above. The

results have been proven independent of it, at least qualitatively.
• u: we have spanned the interval 0.001 < u < 100, the transition band ranging from
u1 = 0.1 tou2 = 1.0.
• Initial conditions: we have chosen random values for the canonical variables(p, q).
• Initial displacementD(0) of the second orbit, chosen in a random direction with length
D0 = 10−7.
• TransientT0: before starting the sampling of our quantities, we let the system evolve

freely for a transient, in order to reduce the bias from initial conditions and displacements.
In most experiments, the transient has been chosen 75 or 375 times the longest harmonic
period, with checks up to 1900 times.
• Numerical integration: a standard fifth-order Runge–Kutta routine was used, with the

integration step1t mentioned above, sufficient for good energy conservation (one part in
107 in the worst conditions).

The results may be summarized as follows: at all energies, below, through and above
threshold, the frequencies in the power spectra may be divided in two distinct intervals, which
define a crossover angular frequencyω∗, and consequently a periodτ ∗ = 2π/ω∗. Figures 1–6
exhibit the ways in which this crossover frequency appears for different observables at different
energies. This frequency depends on the energy densityu, but is the same for all observables
and for all the examined numbersN of degrees of freedom. In particular, we stress that the
peak aroundω∗ does not depend onN , and it cannot be explained by the accumulation of more
and more frequencies whenN grows. Indeed, single peaks may always be discriminated by
looking at singleEk.

The general features of the two frequency intervals are:
(1) Belowω∗. Particularly forEh andρ (whose spectra are very similar also in details)

the first frequency interval presents a whole set of peaks recognizable as a rescaled harmonic
spectrum, whose maximal frequency is just given byω∗. We call the frequency interval up
to ω∗ the ‘quasi-harmonic window’, or the ‘main window’. This occurs below and above the
stochasticity threshold. We recall that the existence of a quasi-harmonic frequency spectrum
even above threshold was already established analytically in [1]. The expression for it, which
is very precisely checked by our present numerical experiments, is the following:

ω̃k = α̃ωk where α̃ = (1 +α)1/2 and α = 2
3[(1 + 3Aεu/χ2)1/2 − 1] (4)

where

ωk = 2
√
χ sin

(
(k − 1)π

N

)
is the harmonic spectrum,χ andε are the harmonic and anharmonic strengths, respectively,
andA is a correlation parameter, whose experimental value is 2.9 below threshold, and 2.3
above. The rescaling factorα̃ is independent ofk and, in our experiments (χ = 1, ε = 0.1),
ranges from 1.00 (u = 0.001) to 2.41 (u = 100).

While the existence of quasi-harmonic frequencies is in a sense obvious below threshold for
the harmonic energyEh =∑k Ek, because of its separable structure, it is not quite so obvious
at high energies. Moreover, at all energies, it is not obvious for those global observables, such
asρ, that do not possess a simple separable structure.
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Figure 1. Power spectra withu = 0.01 for kinetic energy (T ) and microcanonical density (ρ). The
harmonic frequenciesωk are rescaled according to equation (4). Extra frequencies mark 2, 3, 4
times the maximal̃ωk (ω∗). T is multiplied by a factor of 10 for graphical reasons.

We note also that, below threshold, single harmonic energiesEk are quasi-constant of
motion, and consequently their signals in the Fourier transform ofEh are mostly constituted
by noise. Therefore, to give evidence to the shifted frequencies, it is convenient to study
the kinetic components12ωkp

2
k , or else their sumT which is not constant at all, as shown in

figures 1 and 3.
(2) Aboveω∗. All frequencies are also excited (up to the maximum compatible with

the sampling) with a pattern depending on the energyu. Going through figures 1 and 3,
or figures 2 and 4, we see the onset of excited bands, whose maxima are multiples ofω∗,
indicated with additional plus marks in the figures. We call these frequency bands ‘secondary
windows’. Their number is growing withu, and their intensity at fixedu is rapidly decreasing.
In the stochastic regime, the secondary windows collapse into a continuous descent, shown in
figures 5 and 6, where only the first of the secondary windows preserves a certain individuality
(this is particularly true forκ). The general behaviour, more and more evident as the energy
grows, is a linear descent in the log–log scale, i.e. a negative power behaviour 1/ωa (coloured
or flicker noise). The exponenta is similar forEh andρ, but slightly different forδ andκ.
The frequency-distribution shape aroundω∗ depends on the observables, but the evidence of
the crossover frequency is always very clear. Apart from the peaks, we do not have any clear
indication about the noise superimposed on the quasi-harmonic spectrum in the main window.

Besides these general features, some observables have peculiar behaviours, as discussed
in the two following paragraphs.

The Lyapunovδ requires, below threshold, an extremely long transient to reach a stable
spectrum, probably due to the slow settlement of the second orbit; furthermore, once stabilized,
this spectrum is almost exclusively composed of noise, showing a little evidence forω∗
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Figure 2. Spectra withu = 0.01 for Lyapunov term (δ), and Frenet–Serret curvature (κ). The
observableδ is multiplied by a factor of 104.
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Figure 3. Spectra withu = 0.4 for kinetic energy (T ) and microcanonical density (ρ).
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Figure 4. Spectra withu = 0.4 for Lyapunov term (δ) and Frenet–Serret curvature (κ). The
observableδ is multiplied by a factor of 102.
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Figure 5. Spectra withu = 40 for harmonic energy (Eh) and microcanonical density (ρ), multiplied
by a factor of 105.
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Figure 6. Spectra withu = 40 for Lyapunov term (δ) and Frenet–Serret curvature (κ). The
observableδ is multiplied by a factor of 10.

(figure 2). Growing with energy, the transient time forδ is drastically shortened, and even for
this observable the overall pattern provides very clear evidence forω∗, as shown in figures 4
and 6, through a strong enhancement even of the frequencies aroundω∗. In the log–log scale,
the peak aroundω∗ seems to be at the confluence of two power laws inverse to each other. The
same enhancement holds forκ in a weaker way.

Another remarkable point regardsSTD(κ), the standard deviation of the curvature along
the orbit, whose behaviour versusu is shown by the lower curve in figure 7. Recalling that in
the homogeneous variables(p, q) the purely harmonicκ is a constant of motion, and therefore
STD(κ) = 0 in the harmonic limit, the initial growth up to threshold is obviously due to
the growing dispersion of values along the trajectory. However, after threshold, this trend is
reversed:STD(κ) decreases, i.e. there is a progressive focalization of the observable around
its mean value. In this sense, we find again that stochasticity coexists with a more and more
stable harmonic-like behaviour. How the standard deviation decreases above threshold is
shown by the upper curve, which represents the same quantity multiplied byα̃, the rescaling
factor. It tends to be constant, which means that the standard deviation behaves asα̃−1. So
far, however, this is only an empirical observation confirming the peculiarity of the curvature
as a link between geometry and dynamics [2].

Conclusions

The structure of the main window shows that, even above threshold, the single quasi-harmonic
modes retain their individuality, not contrasting the final thermalization.

The flicker noise, a phenomenon emerging at high energies for all observables as discussed
in point (2), relates to short correlation timest < τ ∗. This should not be influencial on the
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Figure 7. Lower curve, the standard deviation of the time series of the Frenet–Serret curvatureκ,
as a function of specific energyu. Upper curve, the same multiplied by the factorα̃ given in (4).

problem of thermalization seen as the problem of asymptotic averaging of any observables.
The self-similarity in time, implied by flicker noise, has a preview below and through threshold
in the onset of secondary windows.

The crossover frequencyω∗ depends only on the order parameteru. This supports the
physical relevance ofτ ∗ = 2π/ω∗ as the intrinsic short timescale of the model, which should
properly substitute the purely harmonic timescale 1/ωmax of common use. However, the
rescaling factor grows, at most, to a few units in the large range we explored, and this explains
why the usual reasoning based on a purely harmonic timescale retains its practical validity
even above threshold.

The persistence of harmonic-like features within stochasticity is also indicated by the
behaviour of the standard deviation ofκ, which decreases at growing energies: as stated, this
implies the focalization ofκ around its mean value. In geometrical terms, complementary
to dynamics, this may be viewed in the following way: in the phase space there persist
fundamental oscillations remembering the original harmonic motion on the tori, whose trace
is the quasi-harmonic spectrum. Motion takes place, in the mean, on such ‘effective tori’, and
the return ofSTD(κ) to harmonic-like behaviour as energy grows is due to the stabilization
of these tori. Furthermore, there are also small secondary oscillations of high frequency,
corresponding to additional small deformations of the trajectories. As for the geometrical
pattern of these small deformations, since we know that high frequencies follow a power law
pattern, it is plausible that the deformations, as the geometrical counterpart of this coloured
queue, tend to a sort of fractality. Of course, there is no breaking of smoothness and such a
fractality is to be intended within the same type of approximation in which we speak of flicker
noise.

Here we have overlooked asymptotically long times, linked with the approach to
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equilibrium of the isolated system. We stress that, for the main window, the independence ofN

we have observed relates to the existence and the localization of quasi-harmonic peaks, not to
details of their shapes which, differently than in the secondary windows, could depend on the
slow relaxation of the long-wavelength modes, depending in turn onN (compare the discussion
and, in particular, figure 1 in [1]). In [10, 11] it has been suggested that this slow relaxation
may influence the behaviour of physically meaningful features, e.g. thermal conductivity, for
both isolated and non-isolated one-dimensional chains. We do not know if the short time
structure may also be significant in this respect. In fact, we observe that in figure 2 of [11],
the power spectrum of the global heat flux in FPU chains also shows two distinct regions,
with a crossover between two power laws: there is a remarkable agreement with our spectra
in the high-frequency region, a neat difference in the low-frequency one, where they observe
a divergence. Moreover, the crossover frequency does not recover, apparently, the role of our
ω∗. Therefore the link, if any, between these kind of physical properties and the short time
structure we have explored, is not obvious.
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